
Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Decoupled I/O for Data-Intensive High
Performance Computing

Chao Chen 1 Yong Chen 1 Kun Feng 2 Yanlong Yin 2

Hassan Eslami 3 Rajeev Thakur 4 Xian-He Sun 2

William D. Gropp 3

1Department of Computer Science, Texas Tech University

2Department of Computer Science, Illinoise Institude of Technology

3Department of Computer Science, University of Illinois Urbana-Champaign

4Mathematics and Computer Science Division, Argonne National Laboratory

Sep 12th, 2014

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Scientific Computing and Workload

� High performance computing is a strategic tool for scientific
discovery and innovation

- Climate Change: Community Earth System Model (CESM)
- Astronomy: Supernova, Sloan Digital Sky Survey
- etc..

� Utilizing HPC system to simulate events and analyze the
output to get insights

Figure 1: Climate modeling and analysis
Figure 2: Typical scientific workload

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Big Data Problem

� Many scientific simulations become highly data intensive
� Simulation resolution desires finer granularity both spacial and

temporal
- e.x. climate model, 250KM ⇒ 20KM; 6 hours ⇒ 30 minutes

� The output data volume reaches tens of terabytes in a single
simulation, the entire system deals with petabytes of data
� The pressure on the I/O system capability substantially

increases

PI	
 Project	
 On-­‐Line	
 Data	
 Off-­‐Line	
 Data	

Lamb,	
 Don	
 FLASH:	
 Buoyancy-­‐Driven	
 Turbulent	
 Nuclear	
 Burning	
 75TB	
 300TB	

Fischer,	
 Paul	
 Reactor	
 Core	
 Hydrodynamics	
 2TB	
 5TB	

Dean,	
 David	
 ComputaIonal	
 Nuclear	
 Structure	
 4TB	
 40TB	

Baker,	
 David	
 ComputaIonal	
 Protein	
 Structure	
 1TB	
 2TB	

Worley,	
 Patrick	
 H.	
 Performance	
 EvaluaIon	
 and	
 Analysis	
 1TB	
 1TB	

Wolverton,	
 Christopher	
 KineIcs	
 and	
 Thermodynamics	
 of	
 Metal	
 and	

Complex	
 Hydride	
 NanoparIcles	

5TB	
 100TB	

Washington,	
 Warren	
 Climate	
 Science	
 10TB	
 345TB	

Tsigelny,	
 Igor	
 Parkinson's	
 Disease	
 2.5TB	
 50TB	

Tang,	
 William	
 Plasma	
 Microturbulence	
 2TB	
 10TB	

Sugar,	
 Robert	
 LaVce	
 QCD	
 1TB	
 44TB	

Siegel,	
 Andrew	
 Thermal	
 Striping	
 in	
 Sodium	
 Cooled	
 Reactors	
 4TB	
 8TB	

Roux,	
 Benoit	
 GaIng	
 Mechanisms	
 of	
 Membrane	
 Proteins	
 10TB	
 10TB	

Figure 3: Data volume of current simulations
Figure 4: Climate Model Evolution: FAR (1990), SAR

(1996), TAR (2001), AR4 (2007)

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Gap between Applications’ Demand and I/O System
Capability

� Gyrokinetic Toroidal Code (GTC) code

- Outputs particle data that consists of two 2D arrays for
electrons and ions, respectively

- Two arrays distributed among all cores, particles can move
across cores in a random manner as the simulation evolves

� A production run with the scale of 16,384 cores

- Each core outputs roughly two million particles, 260GB in total
- Desires O(100MB/s) for efficient output

� The average I/O throughput of Jaguar (now Titan) is around
4.7MB/s per node

� Large and growing gap between the application’s requirement
and system capability

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Decoupled I/O

A new way of moving computations near to data to minimize the
data movement and address the I/O bottleneck issue

� A runtime system design for our Decoupled Execution
Paradigm
� Providing a set of interface for users to decouple their

applications, and map into different sets of nodes

!""#$%&'()*+

!"
#$
%&
'
"
"
$
&#
(

)'&*+(,,-(.#'%*/$()'&*+(,,-(.#'%*/$(

!"#$%&'()"*'+(!"#$%&',+-*'(

./&/()"*'+(

0&"1/2',+-*'(

./&/()"*'+(

.'3"%$4'*(5-26,78*(!"#$%982(

0:+&'#+(;136-&'3&%1'(

Figure 5: Decoupled Execution Paradigm and System Architecture

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Overview of Decoupled I/O

� An extension to MPI library, managing both Compute nodes
and Data nodes in the DEP architecture.
� Internally splits them into compute group and data group for

normal applications and data-intensive operations respectively.

System	
 Network	

High-­‐speed	
 Network	

Compute node Data node

Storage node

Im
proved	

M
PI	
 Library	

PFS	

Figure 6: Overview of Decoupled I/O

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Overview of Decoupled I/O

Involves 3 improvements to existing MPI library:

� Decoupled I/O APIs

� Improved MPI compiler (mpicc)

� Improved MPI process manager (hydra)

	

Data node Compute node

MPI Runtime

void func(…)

main() {
 MPI_Init(…);

 MPI_Op myop;
 MPI_Op_create(func, myop)

 ….
 computation();
 MPI_File_decouple_xxx(in, out,
my_op);
 compute(out);
}

void func(…)

main() {
 MPI_Init(…);

 MPI_Op myop;
 MPI_Op_create(func, myop)

 ….
 if (rank < n) {
 computation();
 MPI_File_decouple_xxx(in, out, myop);

 compute(out);
 }
 if (rank > n) {
 wait_for(request)
 processing(); //including I/O
 send_result();
 }
}

Mpicc code trans

mpirun mpirun
User Implemented Code

Figure 7: Decoupled I/O at runtime

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Decoupled I/O API

� Abstracting each data-intensive operation with two phases:
traditional I/O and data processing

� Providing APIs to treat them as an ensemble with different
file handler design, and data op argument

Table 1: Decoupled I/O APIs

MPI File decouple open(MPI Decoupled File fh, char * filename, MPI Comm comm);
MPI File decouple close(MPI Decoupled File fh, MPI Comm comm);
MPI File decouple read (MPI Decoupled File fh, void *buf, int count, MPI Datatype data type,

MPI Op data op, MPI Comm comm);
MPI File decouple write(MPI Decoupled File fh, void *buf, int count, MPI Datatype data type,

MPI Op data op, MPI Comm comm);
MPI File decouple set view(MPI Decoupled File fh, MPI Offset disp, MPI Datatype etype,

MPI Datatype filetype, char * datarep, MPI Info info, MPI Comm comm);
MPI File decouple seek(MPI Decoupled File fh, MPI Offset offset, int whence, MPI Comm comm);

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Decoupled I/O API Example

Traditional Code

int buf;

MPI File read(fh, buf, ...);

for(i = 0; i < bufsize; i++) {

sum += buf[i];

} ...

Decoupled I/O Code

/* define operation */

int sum op(buf, bufsize) {

for (i = 0; i < bufsize; i++)

sum += buf[i];

}

....

MPI op myop;

MPI Op create(myop, sum op);

MPI File decoupled read(fh, sum, myop,);

...
Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Process/Node management

� Data nodes and compute nodes are at the same level
belonging to two groups

� “mpirun -np n -dp m -f hostfile ./app” to run an application
with n compute processes and m data processes

� All of them belong to the MPI COMM WORLD
communicator with distinguished rank

� Each group has its own group communicator
MPI COMM LOCAL as an intra-communicator,

� MPI COMM INTER communicator as a group-to-group
inter-communicator between the compute processes group and
data processes group.

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Code Decoupling & Compiler Improvement

� Identify the process type, compute process or data process,
with its rank in MPI COMM WORLD to execute different
codes

� Data process code is automatically generated by mpicc with
hints defined by macros MPI DECOUPLE START and
MPI DECOUPLE END

� MPI Op for defining offloaded operations that have to be
registered at the before MPI DECOUPLE START.

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Decoupled I/O Implementation and Prototyping

� Completely based on MPI library

� Gather the tasks from compute processes, and scatter them to
data process.

Data node Compute node

MPI Runtime Compute processes Data processes

MPI_Gather:
tasks collective

Tasks at master
process

Tasks at master
process

MPI_Scatter

MPI_Send(request)
(MPI_COMM_INTER)

MPI_Gather
MPI_Scatter:
results

MPI_Recv(results)
(MPI_COMM_INTER)

Figure 8: Decoupled I/O prototype

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Platform and Setup

Platform:

Name DISCFarm Cluster(small), Hrothgar Cluster(large)
Num. of nodes DISCFarm: 16 nodes, Hrothgar: 640 nodes
CPU DISCFarm: Xeon 2.6GHz, 8 cores,

Hrothgar: Westmere 2.8GHz, 12 cores
Memory DISCFarm: 4GB/node, Hrothgar: 24GB/node

Evaluated Operations:

Data assimilation (ENKF) read the data, and apply EnKF algorithm (including 6 matrix multiplications,
1 matrix addition, and 1 matrix substitution), then write almost the same size data

Flow-routing compute the direction where fluids flow to
Summation calculates the total value of all specified data elements
Lookup searches for and returns all elements that meet given criteria

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Results and Analysis

� Compared against Active Storage (AS)
� 2 storage nodes, 4 data nodes and 8 compute nodes for

DEPIO, 12 compute nodes for AS
� Around 13% improvements

0	

200	

400	

600	

800	

1000	

1200	

1400	

4GB	
 8GB	
 16GB	
 32GB	

Ex
ec
u&

on
	
 &
m
e	

(s
)	

Data	
 size	

Performance	
 of	
 Decoupled	
 I/O	

AS	

DEPIO	

Figure 9: Performance Comparison of Decoupled I/O and Active Storage I/O (Observed CPU usage on storage

nodes: 1.3%)

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Results and Analysis (with resource contention)

� Workload on storage nodes has great impact on Active
Storage performance

� DEPIO keeps better performance than AS with less impact
from workload on storage nodes

-­‐100.00%	

-­‐80.00%	

-­‐60.00%	

-­‐40.00%	

-­‐20.00%	

0.00%	

20.00%	

40.00%	

21%	
 43%	
 61%	
 83%	

pe
rf
or
m
an

ce
	
 in
pr
ov
em

en
t	
 a

ga
in
st
	
 T
S	

CPU	
 usage	
 of	
 each	
 storage	
 node	

Performance	
 of	
 Decoupled	
 I/O	
 under	

different	
 CPU	
 usage	

AS	

DEPIO	

Figure 10: Performance of Decoupled I/O under Different CPU Usages on storage nodes

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Results and Analysis

� Up to 60 nodes in the Hrothagar cluster

� Compared against traditional storage I/O (TS)

� Observed 25% performance improvements

0	

2000	

4000	

6000	

8000	

10000	

24	
 36	
 48	
 60	

Ex
ec
u&

on
	
 tm

e	

(s
)	

number	
 of	
 nodes	

Emula&on	
 Performance	
 of	
 Decoupled	

I/O	

DEPIO	

TS	

Figure 11: Emulation Performance of the Decoupled I/O

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Overhead of the Decoupled I/O

� Primary overhead comes from the communication, Gather,
Scatter, etc...

� As the data size of each I/O request increases, this overhead
is observed to decrease steadily

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

4KB	
 32KB	
 128KB	
 512KB	
 2MB	
 4MB	

Ra
#o

	

Data	
 size	
 of	
 each	
 I/O	
 opera#on	

Communica#on	
 Overhead	
 of	

Decoupled	
 I/O	

communica7on	

data	
 processing	

Figure 12: Overhead of the Decoupled I/O Operation

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Conclusion and Future Work

� Big data computing brings new opportunities but also poses
big challenges

� Dedicating data nodes for data-intensive operations can be
helpful and critical for system performance

� An initial investigation of runtime system design to decouple a
task into compute-intensive and data-intensive phases

- Beneficial because of less resource contention, and reduced
system wide data movements.

� Prototyping were conducted to evaluate the potential of
Decoupled I/O

� Plan to investigate the feasibility of the integration with the
MapReduce and in-memory computing model

Yong Chen DISCL @ Texas Tech University

Background and Motivation Decoupled I/O Evaluation Conclusion and Future Work

Thank You
For more information, please visit: http://discl.cs.ttu.edu

This research is sponsored in part by the National Science
Foundation under the grants CNS-1338078, CNS-1162540,

CNS-1162488, and CNS-1161507.

Yong Chen DISCL @ Texas Tech University

http://discl.cs.ttu.edu

	Background and Motivation
	Decoupled I/O
	Evaluation
	Conclusion and Future Work

